data-science-across-disciplines

Main repository for the Data Science Across Disciplines module offered at the Centre for Interdisciplinary Methodologies at the University of Warwick

Home
Detailed Information

:: Sessions ::

Session-01
Session-02
Session-03
Session-04
Session-05
Session-06
Session-07
Session-08
Session-09


View the Project on GitHub cagatayTurkay/data-science-across-disciplines

Data Science Across Disciplines

Session-02: THINKING DATA: THEORETICAL AND PRACTICAL CONCERNS

This week explores the cultural, ethical, and critical challenges posed by data artefacts and data-intensive scientific processes. Engaging with Critical Data Studies, we discuss issues around data capture, curation, data quality, inclusion/exclusion and representativeness. The session also discusses the different kinds of data that one can encounter across disciplines, the underlying characteristics of data and how we can analytically and practically approach data quality issues and the challenge of identifying and curating appropriate data sets.

The practical lab session walks students through the earlier stages of the data science process. We start by looking at different types of data suitable for analysis within a data science framework and move on to how to wrangle the data to make it available for further use.

Highlights of the lecture

This week explores the cultural, ethical, and critical challenges posed by data artefacts and data-intensive scientific processes. Engaging with Critical Data Studies, we discuss issues around data capture, curation, data quality, inclusion/exclusion and representativeness. The session also discusses the different kinds of data that one can encounter across disciplines, the underlying characteristics of data and how we can analytically and practically approach data quality issues and the challenge of identifying and curating appropriate data sets.

Some of the key concepts you should remember from this week are …

Practical Lab Session

The practical lab session walks you through the earlier stages of the data science process. We start by looking at different types of data suitable for analysis within a data science framework and move on to how to wrangle the data to make it available for further use.

At the end of the session, you should be able to ..

Independent learning & Reading lists

Reading lists & Resources

Required reading

Background reading